Svinkovod.ru

Бытовая техника
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод половинного деления

Метод половинного деления

Пусть корень уравнения (1) отделен на отрезке [a;b]. Требуется найти значение корня с точностью ε.

"Процедура уточнения положения корня заключается в построении последовательности вложенных друг в друга отрезков, каждый из которых содержит корень уравнения. Для этого находится середина текущего интервала неопределенности (6):

В в качестве следующего интервала неопределенности из двух возможных выбирается тот, на концах которых функция F(x)=0имеет разные знаки"[8]. "Точность будет достигнута, если:

Корень уравнения вычисляется по формуле x=(an+bn)/2 (7)"[1].

Пусть дана задача следующего характера: Уточнить корни уравнения cos(2x)+x-5=0 методом половинного деления с точностью до 0,00001, используя:

1. Mathcad;

Excel.

Для того чтобы уточнить корни уравнения cos(2x)+x-5=0 методом половинного деления, используя Excel, необходимо выполнить следующие действия:

1. Заполнить ячейки A1:H1 последовательно следующим образом: a, b, c=(a+b)/2, f(a), f(b), f(c), |b-a|<=2*e, e.

2. Ввести в ячейку A2 число 5, в ячейку B2 — число 6.

3. В ячейку B2 ввести формулу: =(A2+B2)/2.

4. В ячейку D2 ввести формулу: =cos(2*A2)+A2-5, скопировать эту формулу в ячейки E2:F2.

5. Ввести в ячейку G2 формулу: =ЕСЛИ(ABS(B2-A2)<=2*$H$2;C2;"-").

6. Ввести в ячейку H2 число 0,00001.

7. В ячейку A3 ввести формулу: =ЕСЛИ(D2*F2<0;A2;C2).

8. В ячейку B3 ввести формулу: =ЕСЛИ(D2*F2<0;C2;B2).

9. Диапазон ячеек C2:G2 скопировать в диапазон ячеек C3:G3.

10. Выделить диапазон ячеек A3:G3 и с помощью маркера заполнения заполнить все нижестоящие ячейки до получения результата в одной из ячеек столбца G (это ячейки A3:G53).

В итоге получаем следующее:

Ответ: Корень уравнения cos(2x)+x-5=0 равен 5,32977.

  1. Метод хорд

Берілген әдісті шешу үшін y=F(x) функциясын құру керек

" Для реализации данного метода, нужно построить исходную функциюy=F(x)и найти значения функции на концах отрезка F(a) и F(b). Затем провести хорду М1M2c концами в точкахМ1(a, F(a)) и M2(b, F(b)). Абсцисса точки пересечения хорды М1M2с осью OX это и есть приближенный кореньx1. Далее найти точкуM3(X1 ,F(x1 )), построить следующую хорду и найти второй приближенный корень x2. И так далее. В зависимости от поведения функции возможны два случая:

Рис. 1Рис. 2

Для первого случая (Рис. 1) справедлива следующая формула (8):

и справедливо неравенство: F(a)*F»(a)>0, где x=b.

Для второго случая (Рис. 2) справедлива следующая формула (9):

и справедливо неравенство: F(b)*F»(b)>0, где x=a.

Условия сходимости метода секущих аналогичны условиям сходимости метода Ньютона, т. е."[1]

Пусть дана задача: Уточнить корни уравнения cos(2x)+x-5=0 методом хорд с точностью до 0,00001, используя:

1. Mathcad;

Excel.

Для того чтобы уточнить корни уравнения cos(2x)+x-5=0 методом хорд, используя Excel, необходимо выполнить следующие действия:

1. Выбрать одну из двух предложенных формул для решения задачи, для этого:

o Найти производную первого порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f1(x)=-2sin(2x)+1.

o Найти производную второго порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f2(x)=-4cos(2x).

o Заполнить ячейки следующим образом:

— В ячейку A1 ввести a.

Читайте так же:
Как в фотошопе высветлить картинку

— В ячейку A2 ввести цифру 5.

— В ячейку B1 ввести b.

— В ячейку B2 ввести цифру 6.

— В ячейку C1 ввести f(x)=cos(2x)+x-5.

— В ячейку C2 ввести формулу =COS(2*A2)+A2-5.

— В ячейку D1 ввести f1(x)=-2sin(2x)+1.

— В ячейку E1 ввести f2(x)=-4cos(2x).

— В ячейку E2 ввести формулу =-4*COS(2*A2).

— В ячейку F1 ввести Выбор формулы.

— В ячейку F2 ввести формулу =ЕСЛИ(C2*E2>0;"Воспользоваться формулой 8";"Воспользоваться формулой 9").

— В ячейку G1 ввести e.

— В ячейку G2 ввести цифру 0,00001.

o В итоге получается следующее:

2. Исходя из того, что выбрана формула 9, в Excel необходимо выполнить следующие действия:

o В ячейку A4 ввести xn.

o В ячейку B4 ввести f(xn).

o В ячейку C4 ввести b-xn.

o В ячейку D4 ввести f(xn)*(b-xn).

o В ячейку E4 ввести f(b).

o В ячейку F4 ввести f(b)-f(xn).

o В ячейку G4 ввести xn-f(xn)*(b-xn)/f(b)-f(xn).

o В ячейку H4 ввести |f(xn)|<=e.

o В ячейку A5 ввести цифру 5.

o В ячейку B5 ввести формулу =COS(2*A5)+A5-5.

o В ячейку C5 ввести формулу =$B$2-A5.

o В ячейку D5 ввести формулу =B5*C5.

o В ячейку E5 ввести формулу =COS(2*$B$2)+$B$2-5.

o В ячейку F5 ввести формулу =$E$5-B5.

o В ячейку G5 ввести формулу =A5-(B5*C5/F5).

o В ячейку H5 ввести формулу =ЕСЛИ(ABS(B5)<=$G$2;A5;"-").

o В ячейку A6 ввести формулу =G5.

o Выделить диапазон ячеек B5:D5 и скопировать его методом протягивания в диапазон ячеек B6:D6.

o Выделить диапазон ячеек F5:H5 и скопировать его методом протягивания в диапазон ячеек F6:H6.

o Выделить диапазон ячеек A6:H6 и скопировать его методом протягивания в диапазон ячеек ниже до получения результата в одной из ячеек столбца H (A6:H9).

В итоге получаем следующее:

Ответ: Корень уравнения cos(2x)+x-5=0 равен 5,32976.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с) .

Метод половинного деления (метод дихотомии)

Метод половинного деления основан на последовательном делении отрезка локализации корня пополам.

Для этого выбирается начальное приближение к отрезку [a, b], такое, что f(a)×f(b)<0, затем определяется знак функции в точке — середине отрезка [a, b]. Если он противоположен знаку функции в точке a, то корень локализован на отрезке [a, c], если же нет – то на отрезке [c, b]. Схема метода дихотомии приведен на рисунке 2.

Рисунок 2. Последовательное деление отрезка пополам и приближение к корню

Алгоритм метода дихотомии можно записать так:

1. представить решаемое уравнение в виде

2. выбрать a, b и вычислить

3. если f(a)×f(с)<0, то a=a; b = c иначе a = c; b=b

4. если критерий сходимости не выполнен, то перейти к п. 2

Пример решения уравнения методом дихотомии

Найти решение заданного уравнения методом дихотомии с точностью до 10 -5 .

Пример создания расчетной схемы на основе метода дихотомии на примере уравнения: на отрезке [1, 2]

Данный метод заключается в проверке на каждой итерации условия:

если f(a)×f(с)<0 и выбор соответствующего отрезка для следующей итерации.

Метод половинного деления (метод дихотомии) - №8 - открытая онлайн библиотекаa)
Метод половинного деления (метод дихотомии) - №9 - открытая онлайн библиотека
b)

Рисунок 3. Последовательность итераций метода дихотомиипри поиске корня уравнения на отрезке [1, 2]

Читайте так же:
Как в фотошопе изменить задний фон фотографии

a) схема расчета (зависимые ячейки); b) режим отображения формул;

Для нашего примера итерационная последовательность для нахождения решения принимает вид:

Точность до пятой значащей цифры достигается за 20 итераций.

Скорость сходимости этого метода является линейной.

При выполнении начального условия он сходится к решению всегда.

Метод половинного деления удобен при решении физически реальных уравнений, когда заранее известен отрезок локализации решения уравнения.

2 Решение уравнений, используя “Подбор параметра”

Используя возможности Excel можно находить корни нелинейного уравнения вида f(x)=0 в допустимой области определения переменной. Последовательность операций нахождения корней следующая:

1. Производится табулирование функции в диапазоне вероятного существования корней;

2. По таблице фиксируются ближайшие приближения к значениям корней;

3. Используя средство Excel Подбор параметра, вычисляются корни уравнения с заданной точностью.

При подборе параметра Excel использует итерационный (циклический) процесс. Количество итераций и точность устанавливаются в меню Сервис/Параметры/вкладка Вычисления. Если Excel выполняет сложную задачу подбора параметра, можно нажать кнопку Пауза в окне диалога Результат подбора параметра и прервать вычисление, а затем нажать кнопку Шаг, чтобы выполнить очередную итерацию и просмотреть результат. При решении задачи в пошаговом режиме появляется кнопка Продолжить — для возврата в обычный режим подбора параметра.

2.1 Пример решения уравнения, используя “Подбор параметра”

Например, найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3].

Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3; 3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня.

Рисунок 4. Поиск приближенных значений корней уравнения

Выполните команду меню Сервис/Параметры,во вкладкеВычисления установите относительную погрешность вычислений E=0,00001, а число итераций N=1000, установите флажок Итерации.

Выполните команду меню Сервис/Подбор параметра. В диалоговом окне (рисунок 9) заполните следующие поля:

þ Установить в ячейке: в поле указывается адрес ячейки, в которой записана формула правой части функции;

þ Значение: в поле указывается значение, которое должен получить полином в результате вычислений, т.е. правая часть уравнения (в нашем случае 0);

þ Изменяя значение: в поле указывается адрес ячейки (где записано начальное приближение), в которой будет вычисляться корень уравнения и на которую ссылается формула.

Метод половинного деления (метод дихотомии) - №14 - открытая онлайн библиотека

Рисунок 5. Диалоговое окно Подбор параметра для поиска первого корня

После щелчка на ОК получим значение первого корня -1,65793685.

Выполняя последовательно операции аналогичные предыдущим, вычислим значения остальных корней: -0,35913476 и 2,05170101.

3 Решение уравнений и систем уравнений, используя надстройку “Поиск решения”

Для решения уравнений можно также использовать команду Поиск решения,доступ к которой реализуется через пункт меню Сервис/Поиск решения.

Последовательность операций нахождения корней следующая:

1. Найти приближенное значение корня уравнения

2. Открыть диалог Поиск решения и установить следующие параметры (рисунок 10):

Читайте так же:
Как в ворде создать шаблон документа

þ в поле Установить целевую ячейку ввести адрес ячейки, содержащей формулу (левую часть уравнения);

þ установить переключатель в положение ‘значению’ и ввести значение (правая часть уравнения);

þ в поле Изменяя ячейки ввести адреса изменяемых ячеек, т.е. аргумента x целевой функции,;

þ в поле Ограничения с помощью кнопки Добавить ввести все ограничения, которым должен отвечать результат поиска (область поиска корня уравнения);

þ для запуска процесса поиска решения нажать кнопку Выполнить.

þ Для сохранения полученного решения необходимо использовать переключатель Сохранить найденное решение в открывшемся окне диалога Результаты поиска решения.

Метод половинного деления (метод дихотомии) - №15 - открытая онлайн библиотека

Рисунок 6. Диалоговое окно Поиск решения

Полученное решение зависит от выбора начального приближения. Поиск начальных приближений рассмотрен выше.

Рассмотрим некоторые Опции, управляющие работой Поиска решения, задаваемые в окне Параметры (окно появляется, если нажать на кнопку Параметры окна Поиск решения):

þ Максимальное время — ограничивает время, отведенное на процесс поиска решения (по умолчанию задано 100 секунд, что достаточно для задач, имеющих около 10 ограничений, если задача большой размерности, то время необходимо увеличить).

þ Относительная погрешность — задает точность, с которой определяется соответствие ячейки целевому значению или приближение к указанным ограничениям (десятичная дробь от 0 до 1).

þ Неотрицательные значения — этим флажком можно задать ограничения на переменные, что позволит искать решения в положительной области значений, не задавая специальных ограничений на их нижнюю границу.

þ Показывать результаты итераций — этот флажок позволяет включить пошаговый процесс поиска, показывая на экране результаты каждой итерации.

þ Метод поиска — служит для выбора алгоритма оптимизации. Метод Ньютона был рассмотрен ранее. В Методе сопряженных градиентов запрашивается меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно велика и если итерации дают слишком малое отличие в последовательных приближениях.

Метод половинного деления (метод дихотомии) - №16 - открытая онлайн библиотека

Рисунок 7. Вкладка Параметры окна Поиск решения

3.1 Пример решения уравнения, используя надстройку “Поиск решения”

Например, найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3]. Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3;3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня. На рисунке 12 представлен пример заполнения окна Поиск решения для нахождения первого корня на отрезке [-2; -1].

Метод половинного деления (метод дихотомии) - №17 - открытая онлайн библиотека

Рисунок 8. Пример решения уравнения при помощи надстройки Поиск решения

Задание 1. Решение уравнений численным методом

На листе 1 (название листа: Численные методы) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания) реализовать итерационные расчетные схемы методов, указанных в Таблице 1 для нахождения хотя бы одного корня на заданном интервале. Количество итераций просчитать, оценивая , .

Задания 2. Решение уравнений встроенными средствами “Подбор параметра” и “Поиск решения”

На листе 2 (название листа: Подбор Поиск) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания) на заданном интервале и с некоторым шагом (шаг выбрать самостоятельно) построить таблицу значений функции f(x) и определить количество корней уравнения и выделить интервалы, на которых находятся корни. Построить график функции. Уточнить на заданных интервалах с точностью до 10 -6 корни уравнения с помощью встроенных средств: Подбор параметра, Поиск решения

Читайте так же:
Можно ли давать фотографировать птс

Таблица 1. Индивидуальные задания

№ вариантаУравнение f(x)=0Диапазон поиска корней
AB

Контрольные вопросы

1. Какова итерационная схема метода дихотомии?

2. Как реализовать метод дихотомии средствами MS Excel?

3. Какие встроенные средства решения уравнений есть в Excel?

4. Как воспользоваться средством Подбор параметра для поиска решения уравнения?

5. Как воспользоваться средством Поиск решения для поиска решения уравнения?

3.1 Метод половинного деления

Естественным и наиболее распространенным на практике методом поиска экстремума функции одной переменной является метод последовательного деления отрезка пополам. Этот метод был известен еще в древней Греции как метод дихотомии.

2.1 Метод половинного деления при приближенном вычислении алгебраических и трансцендентных уравнений

Пусть корень уравнения f(x)=0 отделен на отрезке [a, b], т.е. f(a)f(b)<0 и f (x) сохраняет знак (рис. 1). Рисунок 1 — График функции y=f(x). В качестве начального приближения корня возьмем точку c0 — середину отрезка: Если , то — искомый корень уравнения, если.

3.1 Метод половинного деления

Для данного метода нужен отрезок [a;b] с корнем непрерывной функции f(x) внутри и точность определения корня, которая задаётся “e” Реализация метода в пакете Excel. Реализация метода в пакете MathCad.

2. Сравнительный анализ прямого перебора и половинного деления

половинный деление программа схема Передо мной была поставлена задача написать программу, в которой я бы использовала 2 метода: прямого перебора и половинного деления и сравнила их.

2.2.2 Метод половинного деления

Естественным и наиболее распространенным на практике методом поиска экстремума функции одной переменной является метод последовательного деления отрезка пополам. Этот метод был известен еще в древней Греции как метод дихотомии.

2.1 Метод половинного деления

Его ещё называют методом дихотомии. Этот метод решения уравнений отличается от других методов тем, что для него не требуется выполнения условия, что первая и вторая производная сохраняют знак на интервале [a, b].

1.1 Уточнение корня уравнения методом половинного деления

При решении уравнения, как правило, заранее задается допустимая погрешность приближенного значения корня . В процессе уточнения корней требуется найти их приближенные значения, отличающиеся от точных не более чем на.

2. Метод половинного деления

Для этого метода существенно, чтобы функция f(x) была непрерывна и ограничена в заданном интервале [a, b], внутри которого находится корень. Предполагается также, что значения функции на концах интервала f(a) и f(b) имеют разные знаки, т.е.

1.2 Решение уравнения методом половинного деления

В методе половинного деления предполагается, что функция f(x) прерывна на отрезке [a,b] и на концах отрезка имеет разные знаки: f(a)f(b)<0. Определяется середина отрезка: x0=(a+b)/2. Если f(a)f(x0)<0, то [a1,b1]=[a,x0]; если f(a)f(x0)>0, то [a1,b1]=[x0,b]. Таким образом.

Читайте так же:
Можно ли заново зарегистрироваться на госуслугах
Поиск корней уравнения методом половинного деления

Зададимся интервалом , на котором будем искать корень уравнения . Очевидно, что признаком наличия на данном интервале корня уравнения есть смена знака значения функции на границах отрезка, или.

Метод половинного деления
Метод половинного деления

Программа реализована для нахождения корня уравнения , методом половинного деления, корни которого находятся на промежутке [-2;1], с погрешностью е=0.01. unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs.

Метод половинного деления
2.2 Решение уравнения методом половинного деления

Разделим отрезок [a, b] пополам точкой с = 1/2*(a + b) Получим с = 1/2(-2 — 1)=-3/2=-1.5 Если F(c)=0, то возможны два случая, либо F(x) меняет знак на отрезке [a, с], либо на отрезке [с, b].

Метод половинного деления в excel

Составить программу на языке программирования С++ и блок-схему для решения следующей задачи: уточнить приближенное значение корня нелинейного уравнения f(x) = 0 на заданном отрезке [a,b] методом половинного деления (дихотомии) с точностью ε = 0.001.

Уравнение имеет вид: x 3 — 9x 2 + 20x – 11=0

Отрезок, на котором осуществляется поиск корня: [0; 1]

Блок-схема алгоритма поиска корня уравнения методом половинного деления (дихотомии)

Разработаем алгоритм программы поика решения уравнения на заданном отрезке в виде блок-схемы:

блок-схема алгоритма метод половинного деления

Текст программы решения задачи на С++

В среде программирования Borland C++ 7.0 вводим текст программы на Си ++:

#include <conio.h>
#include <math.h>
// функция для вычисления f(х)
float f(float z)
<
return pow(z,3)+6*pow(z,2)+6*z-7;//возвращаемое значение
>

x=(a+b)/2;// вычисление х после завершения цикла
printf(«x=%f F(x)=%f |a-b|=%f»,x,f(x),fabs(a-b)); // вывод результатов
getch();
>

Нажимаем клавиши CTRL+F9 для компиляции и запуска на выполнение программы. Получаем корень уравнения x≈0,834 :

результат программы на си метод половинного деления

Программа начинается с директив препроцессора, начинающихся с символа #, которые дают указание препроцессору подключить к программе заголовочные файлы с описанием тех или иных библиотечных функций. В данном случае подключается заголовочный файл stdio.h с описанием функций ввода-вывода, заголовочный файл math.h с описанием математических функций и заголовочный файл conio.h с описанием функции ожидания нажатия клавиши getch().

Программа состоит из двух функций: пользовательской функции f(x) и обязательной функции main(). Функция main() не возвращает никаких значений и поэтому она объявляется с ключевым словом void. В отличие от функции main(), функция f(x) возвращает вещественное значение и объявляется с ключевым словом float. Тела функций являются блоками и поэтому ограничены фигурными скобками.

В теле функции main() объявляются вещественные переменные a, b, e, х.
Далее используется оператор цикла while, в котором применяются условные операторы:
if (выражение) оператор 1; else оператор 2; которые позволяют проверить разные ли знаки у концов отрезка.
Использование вышеуказанной библиотечной функции printf() дает возможность вывести на стандартное устройство вывода (монитор) сообщение об отсутствии корней или сообщение с значением корня, значением функции в этой точке и модуль разности концов отрезка.
Тело функции main() зак¬рывается фигурной скобкой. На этом программа заканчивается.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector