Двое играют в следующую игру
Двое играют в следующую игру
Олимпиадная математика с юмором!
Авторы канала:
Петров Сергей — @Chuckchaness
Жуковский Никита — @Geom_man
About
Platform
480. Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, … , делится на 9, если в исходном числе зачеркнуть девятую цифру.
481. Полина и Шахноза ехали вниз по эскалатору. Посередине эскалатора хулиганка Полина сорвала с Шахнозы шапку и бросила её на встречный эскалатор. Пострадавшая Шахноза побежал обратно вверх по эскалатору, чтобы затем спуститься вниз и вернуть шапку. Хитрая Полина побежала по эскалатору вниз, чтобы затем подняться вверх и успеть раньше Шахнозы. Кто успеет раньше, если скорости девочек одинаковые и постоянны относительно эскалатора (и хотя бы в два раза больше скорости эскалатора)?
482. Каждому из двух мудрецов сообщили по натуральному числу, причём им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: «Известно ли тебе моё число?» Докажите, что рано или поздно кто-то из них ответит «да».
483. Международная комиссия состоит из 9 человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее 6 членов комиссии? (любые шесть человек должны открывать сейф, никакие 5 не должны)
484. Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?
485. На столе 20×20 разбросано 96 салфеток 1×1 со сторонам, параллельными краям стола. Докажите, что можно положить еще одну такую салфетку, не пересекающуюся с уже лежащими (по положительной мере).
486. Множество А натуральных чисел таково, что для любого натурального n среди чисел n, 2n, 3n в А лежит ровно одно из них. Известно, что в А лежит двойка. Петя утверждает, что в А лежит 13824, прав ли он?
487. Два бога по очереди выписывают цифры бесконечной десятичной дроби. Первый своим ходом приписывает в хвост любое конечное число цифр, второй — одну. Они успевают сделать все ходы (то есть, бесконечно много) за час. Если в итоге получится периодическая дробь (без предпериода), выигрывает первый, иначе — второй. Кто из них может выиграть, как бы ни играл соперник?
488. Докажите, что число (a+b)(b+c)(a+c), где a, b, c — попарно различные натуральные числа, не может быть степенью двойки.
489. В ряд выложено 5 карточек. На оборотной стороне каждой написано вещественное число. Про любые две карточки можно узнать (а) сумму; (б) произведение чисел на них. (в) Всегда ли можно определить, какие числа написаны на карточках? (г) Можно ли хоть в одном случае определить, какие числа написаны на карточках?
490. На луче из клеток есть ладья и король. София играет за ладью, Софья — за короля, ходят по очереди, ладья не видит короля. Ладья ест короля, если она оказывается с ним на одной клетке. Сможет ли София съесть Софью?
491. Вожатые заказали большую пиццу на полдник школьникам из 7Б. Они забыли сколько школьников осталось в группе (17 или 18), но хотят заранее разрезать пиццу на куски, чтобы получилось всем гарантированно раздать поровну (всю пиццу надо раздать). Каким наименьшим количеством кусков можно обойтись?
492. Докажите, что найдутся миллион идущих подряд натуральных чисел, среди которых ровно тысяча простых.
493. Петя написал на доске натуральное число, а потом стер последнюю цифру и написал ее чуть выше, в показателе степени. Оказалось, что результат делится на первое написанное число. Какое максимальное число мог написать на доске Петя?
494. В центре круглого бассейна плавает Аня. Внезапно к бассейну подошёл учитель по французскому. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем Аня плавает. Аня бегает быстрее. Сможет ли она убежать?
495. У каждого из жителей некоего города есть три знакомых жителя, причём с одним из них он активно общается каждое утро, с другим — каждый полдень, с третьим — каждый вечер. Петя с Васей поссорились и прекратили общаться. Петя заразился вирусом. Докажите, что Вася тоже вскоре заразится.
496. Дана возрастающая арифметическая прогрессия из натуральных чисел. Известно, что у каждого числа ровно два различных простых делителя, причем для всех членов прогрессии эта пара одна и та же. Каково наибольшее возможное количество членов в такой прогрессии?
497. Ежик стоит в левой нижней клетке поля 8×8. А в какой-то другой клетке пасется Лошадка. На поле стоит туман, ничего не видно, но ежику надо найти Лошадку. Лошадка каждую минуту переходит на соседнюю по стороне клетку и громко говорит, куда она перешла (влево, вправо, вверх или вниз). Ежик тоже может сделать шаг в одну из соседних по стороне или диагонали клеток, как только услышит Лошадку. Ежик найдет Лошадку, если окажется с ней на одной клетке. Что же делать Ежику?
Бот от админа, который отгадывает ваше четырехзначное число (все цифры различны) в игре "Быки и Коровы" за (максимум) шесть ходов!
498. Дано вещественное число p из отрезка [0;1]. С помощью симметричной монетки реализовать вероятность p.
Двое играют в следующую игру
Задача 1: Найдите выигрышную стратегию для первого игрока в игре «щёлк» на шоколадке 2 × 100.
Решение: Выигрышные позиции – шоколадки, со столбцами длинами n + 1 и n.
Задача 2: Проанализируйте игру «щёлк» на огрызке шоколадки из трёх строчек: 2, n и n + 2 дольки. а) Кто выигрывает при n = 2,3,4,5 б) n – произвольное.
Задача 3: Игра в «двойные шахматы» ведется также, как и в обычные, только игроки делают по 2 хода за раз. Докажите, что в этой игре у второго игрока не может быть выигрышной стратегии.
Решение: Передача хода – ход конём туда-обратно, в результате чего позиция не изменится. Знатоки шахматных правил могут заметить, что на самом деле ситуация в игре всё же не вполне симметрична, так как есть, наример, правило троекратного повторения позиции (и правило 50 ходов). Полезно подумать, как можно ответить на эти возражения.
Задача 4: Докажите, что в игре «щёлк» у первого игрока есть выигрышная стратегия на любой прямоугольной шоколадке, в которой больше одной дольки (предъявлять стратегию не обязательно).
Решение: Вничью игра закончиться не может. Предположим, что выигрышная стратегия есть у второго игрока. Долька, находящаяся в правом верхнем углу съедена в любом случае после первого хода. Если у второго есть выигрышная стратегия, то у него есть выигрышный ответный ход на ход первого, состоящий в поедании только правой верхней дольки. Но этот выигрышный ход первый может с тем же успехом сделать сам с самого начала, а далее воспользоваться выигрышной стратегией второго! (А так ли получается, если в шоколадке всего одна долька?)
Задача 5: На бесконечной доске двое играют в крестики-нолики. Кто поставит пять своих в ряд – по вертикали или горизонтали – выигрывает. Докажите, что при правильной игре первый не проигрывает.
Задача 6: На доске написано число 2. За ход можно к записанному числу прибавить один из его делителей отличный от самого этого числа. Проигрывает тот, кто получит число большее 1000. Докажите, что у первого игрока есть выигрышная стратегия.
Решение: После первых двух ходов всегда получается число 4. Из него можно получить как 5, так и 6, но из 5 можно получить только 6. Следовательно, после числа 4 можно осуществить передачу хода в зависимости от того, выигрышным или проигрышным является число 6.
Задача 7: Двое играют в следующую игру: первый выбирает любое поле на доске 8 × 8, ставит туда а) короля; б) коня и делает ход этой фигурой, причём разрешается ходить только на те клетки, на которые раньше никто не вставал. Далее игроки ходят по очереди. Проигрывает тот, кто не может сделать ход.
Решение: Выигрывает второй. Клетки разбиваются на пары стоящих «ходом короля (коня)», и как только первый поставил короля (коня) на одну из клеток пары, второй ходит на другую.